Ontario Agriculture

The network for agriculture in Ontario, Canada

Here are the Canadian guidelines for operating a UAV via @Transport_gc. Thanks to @AndrewMDavidson

Unmanned Air Vehicle (UAV)

http://www.tc.gc.ca/eng/civilaviation/standards/general-recavi-broc...

Personal Aviation, Special Flight Operations & Launch Safety

Definition of Unmanned Air Vehicle (UAV)

Section 101.01 of the Canadian Aviation Regulations (CARs) states, "Unmanned Air Vehicle" means a power driven aircraft, other than a model aircraft, that is operated without a flight crew member on board.

Unmanned air vehicles have been given many names, but are most commonly referred to as unmanned aerial vehicles (UAV), unmanned air vehicles, remotely operated aircraft or remotely piloted vehicles. Unmanned air vehicles may take the form of airships, aeroplanes or rotorcraft. Basically, they could be considered to be any unmanned aircraft that performs a useful mission and can be remotely controlled or has autonomous flight capability.

How unmanned air vehicles are different from model aircraft

"Model aircraft" means an aircraft, the total weight of which does not exceed 35 kg (77.2 pounds), that is mechanically driven or launched into flight for recreational purposes and that is not designed to carry persons or other living creatures. Although some micro unmanned air vehicles may weigh less than 35 kg, they are operated by research institutions and other organizations for non-recreational purposes.

Uses for unmanned air vehicles

Unmanned air vehicles operate in diverse environments, in high risk roles, including but not limited to: atmospheric research (including weather and atmospheric gas sampling), scientific research, oceanographic research, geophysical research, mineral exploration, imaging spectrometry, telecommunications relay platforms, police surveillance, border patrol and reconnaissance, survey and inspection of remote power lines and pipelines, traffic and accident surveillance, emergency and disaster monitoring, cartography and mapping, search and rescue, agricultural spraying, aerial photography, promotion and advertising, weather reconnaissance, flight research, and fire fighting monitoring and management.

Advantages of unmanned air vehicles

Unmanned air vehicles are not constrained by human limitations and requirements. They make it possible to gather information in dangerous environments without risk to flight crews. They can be much more cost effective than manned aircraft operations, although recurring costs to repair or replace those damaged during flight can be very high.

How unmanned air vehicles are regulated

Section 602.41 of the CARs states, no person shall operate an unmanned air vehicle in flight except in accordance with a Special Flight Operation Certificate (SFOC). Section 623.65 outlines information that should be submitted when making an application for a SFOC. Be sure to make your request as early as possible and provide as much information as possible. You must be able to demonstrate the predictability and reliability of the unmanned air vehicle, essentially that it has the ability to perform in the desired environment. The requirement for a SFOC is intended to ensure the safety of the public and protection of other users of the airspace during the operation of the unmanned air vehicle.

The following constitutes an application to conduct the flight of an unmanned air vehicle:

(a)  the name, address, and where applicable, the telephone number and facsimile number of the applicant;

(b)  the name, address, and where applicable the telephone number and facsimile number of the person designated by the applicant to have operational control over the operation (Operation Manager);

(c)  method by which the Operation Manager may be contacted directly during operation;

(d)  the type and purpose of the operation;

(e)  the dates, alternate dates and times of the proposed operation;

(f)  a complete description, including all pertinent flight data on the aircraft to be flown;

(g)  the security plan for the area(s) of operation and security plan for the
area(s) to be overflown to ensure no hazard is created to persons or property on the surface;

(h)  the emergency contingency plan to deal with any disaster resulting from the operation;

(i)  the name, address, telephone and facsimile numbers of the person designated to be responsible for supervision of the operation area (Ground Supervisor), if different from the Operation Manager during the operation;

(j)  a detailed plan describing how the operation shall be carried out. The plan shall include a clear, legible presentation of the area to be used during the operation. The presentation may be in the form of a scale diagram, aerial photograph or large scale topographical chart and must include at least the following information:

  1. the altitudes and routes to be used on the approach and departure to and from the area where the operation will be carried out;
  2. the location and height above ground of all obstacles in the approach and departure path to the areas where the operation will be carried out;
  3. the exact boundaries of the area where the actual operation will be carried out;
  4. the altitudes and routes to be used while carrying out the operation;
  5. any other information pertinent to the safe conduct of the operation requested by the Minister.

Unmanned Air Vehicles Operating Beyond Visual Range

More and more UAV operators are making applications for Special Flight Operations Certificates (SFOCs) where the UAV is to be operated beyond visual range.  Once the applicant demonstrates the ability to conduct a safe operation, the Minister shall issue the special flight operations certificate.  The SFOC process allows each application to be considered on it's own merits, and the operator must evaluate the risks associated with the proposed operation and provide satisfactory risk mitigation measures.

While the ultimate goal is to “normalize” UAV operations within civil airspace, the industry technology is not mature enough, and the regulatory structure is not in place, to support routine operations.  Detect, sense-and-avoid (DSA) capability is a key to routine UAV operations.  The goal of any detect, sense-and-avoid system is to perform those collision avoidance function s normally provided by a pilot in a manned aircraft.  Therefore, a DSA system will have to detect the traffic in time to process the sensor information, determine if a conflict exists, and execute a manoeuver according to the right-of-way rules.  If pilot interaction with the system is required, transmission and decision time must also be included in the total time between initial detection and the point of minimum separation.  The DSA system will have to possess the capability to detect both participating and non-participating aircraft.

The probability of a UAV colliding with another aircraft must be comparable to that for manned aircraft (i.e. an equivalent level of safety).  Vigilance for the purpose of detecting potential collisions must not be relaxed for any aircraft in flight, regardless of the type of flight, type of aircraft or class of airspace in which the aircraft is operating.

The availability of reliable DSA technology is likely to be a significant number of years away.  Until that time arrives, UAV operators proposing to operate beyond visual range need to be aware that, depending on the mission and the operating environment, it may not be possible to find ways to safely integrate the operation with the manned aircraft.  Each SFOC application will, of course, continue to be assessed on an individual basis.

Where to send your application

If you need more information, or wish to make an application for a Special Flight Operations Certificate - unmanned air vehicle, you may contact any of the following regional offices or service centres:

Regional Contacts

Views: 141

Comment

You need to be a member of Ontario Agriculture to add comments!

Join Ontario Agriculture

Agriculture Headlines from Farms.com Canada East News - click on title for full story

Fertilizer Canada responds to U.S. tariff threat

The U.S. can’t increase its fertilizer production overnight, Fertilizer Canada says

Saskatchewan Pulse Growers Welcomes Three Directors to Board

Saskatchewan Pulse Growers (SPG) is pleased to announce the results of its Board of Directors election, following the close of voting on November 28. The election brings one new Director to the board while retaining two Directors for another term. Joining the SPG Board is Dan Flynn of Lucky Lake. SPG welcomes back Robyn Henry of Hodgeville and Stuart Lawrence of Rosetown, who were both re-elected. The newly elected Directors will officially join SPG’s Board in January 2026, following the organization’s Annual General Meeting (AGM). “On behalf of the Board, I would like to congratulate Dan, Robyn, and Stuart,” says SPG Chair Winston van Staveren. “Each elected member brings valuable experience, expertise, and diverse perspectives that represent a wide range of growing regions across the province. I also want to thank all the candidates who put their names forward. The increased level of engagement and strong slate of candidates this year was positive to see.” Van Staveren also ack

Pulse Market Insight #287

Big Crops But No Surprises From StatsCan The long-awaited 2025 yield and production estimates from StatsCan were released this week but were a bit anticlimactic; anyone looking for a surprise in the numbers would have been disappointed. Yes, crops were certainly larger this year but that was already expected. During harvest, reports of very large yields kept coming in, well above StatsCan’s August and September numbers. As a result, this month’s higher yield estimates from StatsCan were anticipated. In fact, it would have been a shock if the yield numbers hadn’t changed. These latest estimates from StatsCan were based on a large farmer survey conducted in November and confirmed the positive harvest results. In fact, they may have understated the actual yields, as they sometimes do. The StatsCan numbers show the total 2025 pulse crop at 8.22 mln tonnes, a jump of more than 2 million tonnes from last year and the largest production since 2016/17. There were differences for each of the

Alberta Grains and Western Crop Innovations Launch Three-Year Agreement to Strengthen Barley Breeding in Alberta

Alberta Grains (AG) and Western Crop Innovations (WCI) have signed a new three-year Breeding and Technician Chair agreement to advance feed barley breeding in Alberta. Announced at the Alberta Grains Regional Meeting in Lacombe, the partnership represents a $600,000 investment from Alberta Grains, delivered at $200,000 per year, to fund a breeder and senior technician dedicated to high-impact barley research and variety development. Strengthening the Future of Public Plant Breeding in Canada Cereal breeding in Canada has long relied on public funding, but the landscape is rapidly shifting. With the Canadian Food Inspection Agency (CFIA) moving forward on Seed Regulatory Modernization and farmers urging Prime Minister Carney’s government to recognize agriculture’s economic importance, the need for sustainable public plant breeding has become a national discussion. At the same time, Agriculture and Agri-Food Canada (AAFC) faces budget reductions and plans to exit variety development i

Maizex Seeds Invests in the Future of Seed Corn Production in Canada

Maizex Seeds, the seed division of Sollio Agriculture, announces the groundbreaking of a major $8.8 million investment in a new seed corn processing and packaging plant at their Blenheim, Ontario, facility. Maizex Seeds is a national company producing and selling corn and soybean seeds to farmers from coast to coast in Canada under the Maizex brand. The company also sells forage seeds and cereal varieties to farmers in eastern Canada and recently introduced several canola hybrids.

© 2025   Created by Darren Marsland.   Powered by

Badges  |  Report an Issue  |  Terms of Service