Ontario Agriculture

The network for agriculture in Ontario, Canada

Here are the Canadian guidelines for operating a UAV via @Transport_gc. Thanks to @AndrewMDavidson

Unmanned Air Vehicle (UAV)

http://www.tc.gc.ca/eng/civilaviation/standards/general-recavi-broc...

Personal Aviation, Special Flight Operations & Launch Safety

Definition of Unmanned Air Vehicle (UAV)

Section 101.01 of the Canadian Aviation Regulations (CARs) states, "Unmanned Air Vehicle" means a power driven aircraft, other than a model aircraft, that is operated without a flight crew member on board.

Unmanned air vehicles have been given many names, but are most commonly referred to as unmanned aerial vehicles (UAV), unmanned air vehicles, remotely operated aircraft or remotely piloted vehicles. Unmanned air vehicles may take the form of airships, aeroplanes or rotorcraft. Basically, they could be considered to be any unmanned aircraft that performs a useful mission and can be remotely controlled or has autonomous flight capability.

How unmanned air vehicles are different from model aircraft

"Model aircraft" means an aircraft, the total weight of which does not exceed 35 kg (77.2 pounds), that is mechanically driven or launched into flight for recreational purposes and that is not designed to carry persons or other living creatures. Although some micro unmanned air vehicles may weigh less than 35 kg, they are operated by research institutions and other organizations for non-recreational purposes.

Uses for unmanned air vehicles

Unmanned air vehicles operate in diverse environments, in high risk roles, including but not limited to: atmospheric research (including weather and atmospheric gas sampling), scientific research, oceanographic research, geophysical research, mineral exploration, imaging spectrometry, telecommunications relay platforms, police surveillance, border patrol and reconnaissance, survey and inspection of remote power lines and pipelines, traffic and accident surveillance, emergency and disaster monitoring, cartography and mapping, search and rescue, agricultural spraying, aerial photography, promotion and advertising, weather reconnaissance, flight research, and fire fighting monitoring and management.

Advantages of unmanned air vehicles

Unmanned air vehicles are not constrained by human limitations and requirements. They make it possible to gather information in dangerous environments without risk to flight crews. They can be much more cost effective than manned aircraft operations, although recurring costs to repair or replace those damaged during flight can be very high.

How unmanned air vehicles are regulated

Section 602.41 of the CARs states, no person shall operate an unmanned air vehicle in flight except in accordance with a Special Flight Operation Certificate (SFOC). Section 623.65 outlines information that should be submitted when making an application for a SFOC. Be sure to make your request as early as possible and provide as much information as possible. You must be able to demonstrate the predictability and reliability of the unmanned air vehicle, essentially that it has the ability to perform in the desired environment. The requirement for a SFOC is intended to ensure the safety of the public and protection of other users of the airspace during the operation of the unmanned air vehicle.

The following constitutes an application to conduct the flight of an unmanned air vehicle:

(a)  the name, address, and where applicable, the telephone number and facsimile number of the applicant;

(b)  the name, address, and where applicable the telephone number and facsimile number of the person designated by the applicant to have operational control over the operation (Operation Manager);

(c)  method by which the Operation Manager may be contacted directly during operation;

(d)  the type and purpose of the operation;

(e)  the dates, alternate dates and times of the proposed operation;

(f)  a complete description, including all pertinent flight data on the aircraft to be flown;

(g)  the security plan for the area(s) of operation and security plan for the
area(s) to be overflown to ensure no hazard is created to persons or property on the surface;

(h)  the emergency contingency plan to deal with any disaster resulting from the operation;

(i)  the name, address, telephone and facsimile numbers of the person designated to be responsible for supervision of the operation area (Ground Supervisor), if different from the Operation Manager during the operation;

(j)  a detailed plan describing how the operation shall be carried out. The plan shall include a clear, legible presentation of the area to be used during the operation. The presentation may be in the form of a scale diagram, aerial photograph or large scale topographical chart and must include at least the following information:

  1. the altitudes and routes to be used on the approach and departure to and from the area where the operation will be carried out;
  2. the location and height above ground of all obstacles in the approach and departure path to the areas where the operation will be carried out;
  3. the exact boundaries of the area where the actual operation will be carried out;
  4. the altitudes and routes to be used while carrying out the operation;
  5. any other information pertinent to the safe conduct of the operation requested by the Minister.

Unmanned Air Vehicles Operating Beyond Visual Range

More and more UAV operators are making applications for Special Flight Operations Certificates (SFOCs) where the UAV is to be operated beyond visual range.  Once the applicant demonstrates the ability to conduct a safe operation, the Minister shall issue the special flight operations certificate.  The SFOC process allows each application to be considered on it's own merits, and the operator must evaluate the risks associated with the proposed operation and provide satisfactory risk mitigation measures.

While the ultimate goal is to “normalize” UAV operations within civil airspace, the industry technology is not mature enough, and the regulatory structure is not in place, to support routine operations.  Detect, sense-and-avoid (DSA) capability is a key to routine UAV operations.  The goal of any detect, sense-and-avoid system is to perform those collision avoidance function s normally provided by a pilot in a manned aircraft.  Therefore, a DSA system will have to detect the traffic in time to process the sensor information, determine if a conflict exists, and execute a manoeuver according to the right-of-way rules.  If pilot interaction with the system is required, transmission and decision time must also be included in the total time between initial detection and the point of minimum separation.  The DSA system will have to possess the capability to detect both participating and non-participating aircraft.

The probability of a UAV colliding with another aircraft must be comparable to that for manned aircraft (i.e. an equivalent level of safety).  Vigilance for the purpose of detecting potential collisions must not be relaxed for any aircraft in flight, regardless of the type of flight, type of aircraft or class of airspace in which the aircraft is operating.

The availability of reliable DSA technology is likely to be a significant number of years away.  Until that time arrives, UAV operators proposing to operate beyond visual range need to be aware that, depending on the mission and the operating environment, it may not be possible to find ways to safely integrate the operation with the manned aircraft.  Each SFOC application will, of course, continue to be assessed on an individual basis.

Where to send your application

If you need more information, or wish to make an application for a Special Flight Operations Certificate - unmanned air vehicle, you may contact any of the following regional offices or service centres:

Regional Contacts

Views: 143

Comment

You need to be a member of Ontario Agriculture to add comments!

Join Ontario Agriculture

Agriculture Headlines from Farms.com Canada East News - click on title for full story

Bull Rider TJ Gray Wins PRCA Top Gun Award at 2025 National Finals Rodeo

Oregon bull rider TJ Gray captured the PRCA Top Gun Award at the 2025 Wrangler NFR, winning big and making history.

B.C. mink farmers drop legal challenge of ban, citing costs after four-year fight

Mink farmers in British Columbia and elsewhere in Canada are dropping their legal challenge over a pandemic-era ban in the province due to legal fees they say are “far beyond their means.” The British Columbia Mink Producers Association and the Canada Mink Breeders Association had been petitioning for a judicial review of the province’s ban on mink farming and had been challenging the policy decision, which dates back to November 2021. In a statement, the mink farmers say they remain angry at the move by the province, which they describe as driven by “an aggressive anti-fur lobby.” The farmers say they have fought the province unsuccessfully in several separate court attempts while no financial compensation has been offered to operators who had to tear down their farms. The B.C. Court of Appeal ruled in August that the farmers’ lawsuits have “no reasonable prospect of success” and dismissed a bid for damages against the province, provincial health officer Dr. Bonnie Henry, and othe

Oilseed crushing and major grain deliveries statistics, November 2025

Oilseed crushing statistics Data on oilseed crushing are now available for November 2025. Deliveries of major grains Deliveries of major grains across Canada rose by 14.2% in November from the same month the previous year, totalling 5.6 million tonnes. Increases in total wheat (+21.0% to 3.4 million tonnes), canola (+11.1% to 1.6 million tonnes), and rye (+11.2% to 11.9 thousand tonnes) contributed to higher deliveries. Major grains include wheat (excluding durum), durum wheat, oats, barley, rye, flaxseed and canola. Focus on Canada and the United States Producer deliveries capture grain that is destined for a primary elevator, feed mill, crushing plant or flour mill. This includes grain elevators that hold grain before it is exported, as well as shipments to US markets that are not licensed by the Canadian Grain Commission. The imposition of tariffs by the United States may have an impact on producer deliveries of major grains in the coming months. In 2024, Canada exported a tot

Parrish & Heimbecker to buy GrainsConnect Canada

Further consolidation of Western Canada’s grain sector is just around the corner. Parrish & Heimbecker (P&H) is purchasing GrainsConnect Canada (GCC), a joint venture currently owned by Australia’s GrainCorp and Japan’s Zen-Noh Grain Corp. GCC was formed by the two international firms in 2015. P&H is getting four high-capacity grain elevators as well as GCC’s 50 per cent stake in Fraser Grain Terminal at the Port of Vancouver. The elevators are in Reford, Sask., Maymont, Sask., Huxley, Alta., and Vegreville, Alta. The 35,000-tonne facilities are each equipped with 134-car rail loops. P&H has a longstanding partnership with GCC through its shared ownership of Fraser Grain Terminal. The port terminal exports up to four million tonnes of cereals, oilseeds, pulses and other commodities per year. It can handle and discharge 120 railcars and has 70,000 tonnes of storage. It can load grain into vessels at a rate of 2,000 tonnes per hour. The purchase is expected to close in early 2026

Farmers face new challenge as group 14-resistant kochia spreads across western Canada

A new study shows that Group 14-resistant kochia has developed and spread rapidly across Western Canada. Group 14 is an important herbicide group for controlling the prolific weed because it already has widespread resistance to glyphosate, a Group 9 product, and has long had resistance to Group 2 chemistries. Back in 2021, the first known case of Group 14-resistant kochia was discovered in West Central Saskatchewan. In 2022, it was discovered in North Dakota. Charles Geddes, a research scientist in weed ecology and cropping systems at Agriculture and Agri-Food Canada in Lethbridge is a leading expert on herbicide resistant weeds. His team designed genetic tests to identify Group 14 resistance using leaf tissue samples. This increased the speed and efficiency of identification. In a post recently published on Linked-in, Geddes has published a map showing instances of Group14 resistance across all three Prairie provinces. The greatest concentration is in the brown and dark brown so

© 2025   Created by Darren Marsland.   Powered by

Badges  |  Report an Issue  |  Terms of Service